The Earth System Grid Federation (ESGF)

STREAM 2016: Streaming Requirements, Experience, Applications and Middleware Workshop

Dean N. Williams (ESGF Executive Committee Chair)
On behalf of the ESGF Executive Committee and Development Teams

March 22, 2016
ESGF1 is a coordinated multiagency, international collaboration of institutions that continually develop, deploy, and maintain software needed to facilitate and empower the study of climate

CMIP and ESGF history: scientific challenges and motivation use case

ESG recognizes that data management, stewardship and curation is an ongoing and long-lived function that requires a strategy that is resilient to continuing evolution in hardware and software.

Williams
ESGF software infrastructure

ESGF is a software infrastructure for management, dissemination, and analysis of simulation and observational data. The software utilizes hardware, networks, software for data management, access and processing.

ESGF federation nodes interact as equals. Users log onto any node using single sign-on OpenID to obtain and access data throughout the entire federation.
ESGF release version 2.0 (overhauled)

Following a security incident in June 2015, the ESGF system was brought offline and the software stack was extensively re-engineered to accomplish the following goals:

- Execute complete software scan of all modules, fix all exposed and other potential security breaches

- Major upgrade of underlying system infrastructure:
 - CentOS7, Java 1.8, Tomcat 8, Postgres 9.4, OpenSSL 1.0, Python 2.7.9
 - Switch ESGF installer to RPM-based components
 - Run Apache httpd server in front of Tomcat (better performance, flexibility)

- Major upgrade of all ESGF services:
 - Search services (Solr5), data download (TDS5), high performance data transfer (Globus-Connect-Server), computation (UV-CDAT), visualization (LAS)
 - Replace old web-front-end with new CoG user interface

- Republish ALL data collections (CMIP5, CORDEX, Obs4MIPs, ana4MIPs,...)
ESGF sub-tasks and task leaders

<table>
<thead>
<tr>
<th>Sub-Task</th>
<th>Task Leads</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CoG User Interface Working Team</td>
<td>Cecelia DeLuca (NOAA) and Luca Cinquini (NOAA)</td>
<td>Improved ESGF search and data cart management and interface</td>
</tr>
<tr>
<td>2. Compute Working Team</td>
<td>Charles Doutriaux (DOE) and Daniel Duffy (NASA)</td>
<td>Developing the capability to enable data analytics within ESGF</td>
</tr>
<tr>
<td>3. Dashboard Working Team</td>
<td>Sandro Fiore (IS-ENES)</td>
<td>Statistics related to ESGF user metrics</td>
</tr>
<tr>
<td>4. Data Transfer Working Team</td>
<td>Lukasz Lacinski (DOE) and Rachana Ananthakrishnan</td>
<td>ESGF data transfer and enhancement of the web-based download</td>
</tr>
<tr>
<td>5. Documentation Working Team</td>
<td>Matthew Harris (DOE) and Sam Fries (DOE)</td>
<td>Document the use of the ESGF software stack</td>
</tr>
<tr>
<td>6. Identity Entitlement Access</td>
<td>Philp Kershaw (IS-ENES) and Rachana Ananthakrishnan (DOE)</td>
<td>ESGF X.509 certificate-based authentication and improved interface</td>
</tr>
<tr>
<td>7. Installation Working Team</td>
<td>Nicolas Carenton and Prashanth Dwarakanath (IS-ENES)</td>
<td>Installation of the components of the ESGF software stack</td>
</tr>
<tr>
<td>8. International Climate Network Working Group</td>
<td>Eli Dart (DOE/ESnet) and Mary Hester (DOE/ESnet)</td>
<td>Increase data transfer rates between the ESGF climate data centers</td>
</tr>
<tr>
<td>9. Metadata and Search Working Team</td>
<td>Luca Cinquini (NASA)</td>
<td>ESGF search engine based on Solr5; discoverable search metadata</td>
</tr>
<tr>
<td>10. Node Manager Working Team</td>
<td>Sasha Ames (DOE) and Prashanth Dwarakanath (IS-ENES)</td>
<td>Management of ESGF nodes and node communications</td>
</tr>
<tr>
<td>11. Provenance Capture Working Team</td>
<td>Bibi Raju (DOE)</td>
<td>ESGF provenance capture for reproducibility and repeatability</td>
</tr>
<tr>
<td>12. Publication Working Team</td>
<td>Sasha Ames (DOE) and Rachana Ananthakrishnan</td>
<td>Capability to publish data sets for CMIP and other projects to ESGF</td>
</tr>
<tr>
<td>13. Quality Control Working Team</td>
<td>Martina Stockhause (IS-ENES) and Katharina Berger (IS-ENES)</td>
<td>Integration of external information into the ESGF portal</td>
</tr>
<tr>
<td>14. Replication Working Team</td>
<td>Stephan Kindermann (IS-ENES) and Tobias Weigel (IS-ENES)</td>
<td>Replication tool for moving data from one ESGF center to another</td>
</tr>
<tr>
<td>15. Software Security Working Team</td>
<td>Prashanth Dwarakanath (IS-ENES) and Laura Carriere (NASA)</td>
<td>Security scans to identify vulnerabilities in the ESFF software</td>
</tr>
<tr>
<td>16. Tracking / Feedback Notification Working Team</td>
<td>Sasha Ames (DOE)</td>
<td>User and node notification of changed data in the ESGF ecosystem</td>
</tr>
<tr>
<td>17. User Support Working Team</td>
<td>Torsten Rathmann (IS-ENES) and Matthew Harris (DOE)</td>
<td>User frequently asked questions regarding ESGF and housed data</td>
</tr>
<tr>
<td>18. Versioning Working Team</td>
<td>Stephan Kindermann (IS-ENES) and Tobias Weigel (IS-ENES)</td>
<td>Versioning history of the ESGF published data sets</td>
</tr>
</tbody>
</table>

Further elaborations of the sub-tasks are described in the ESGF progress reports, which can be found online: http://esgf.llnl.gov/reports.html
Compute Working Team

Enabling data proximal analytics

- Create ESGF Analytics capabilities by exposing compute resources through well defined interfaces
- Analytics that may require high performance computing resources (compute and memory)
- Allow ESGF users to download the outputs of analysis rather than huge data sets

Web Processing Service Application Programming Interface (WPS API)

- Suite of analysis applications that can be executed through an API
- API fits multiple backend implementations
- Relatively simple analysis, such as averages, maximums, minimums, etc.
- More complex routines, such as regridding, anomalies, trends, etc.
Two reference back-end implementations

Web Processing Service

- Client Side
 - GetCapabilities – returns service-level metadata
 - DescribeProcess – returns a description of a process including its inputs and outputs
 - Execute – returns the output(s) of a process

- Server Side/ESGF Node

- WPS Client

High-Performance Compute/Storage

- Climate Data Analysis Service (CDAS)
 - AGU IN31A-1749: A WPS Based Architecture for Climate Data Analytic Services (CDAS) at NASA

- Traditional High-Performance Compute Cluster (shared everything)
 - MPI, scripts, Python, etc.
 - Tools such as UV-CDAT, numpy, ESMF, etc.
 - Shared storage, such as GPFS or Lustre

- Climate Analytics-as-a-Service (CAaaS)
 - AGU IN31A-1750: Extending Climate Analytics-as-a-Service to the Earth System Grid Federation

- Integrated Compute and Storage Cluster (shared nothing)
 - MapReduce, SQL, R, etc.
 - Hadoop, HIVE, Impala, Spark
 - Object storage, such as Hadoop
ON-DEMAND STREAMING
of massive climate simulation ensembles

Cameron Christensen*
Giorgio Scorzelli*

Peer-Timo Bremer°
Valerio Pascucci*

gs://www.sci.utah.edu
Visualization streaming

NGDC, ETOPO2 Global 2' Elevations: Tibet: 1500

ANALYSIS AND VISUALIZATION

- Retrieve datasets to common location
- Regrid data to common domain
- Process using out-of-core or parallel supercomputer
- Downsample large domains or visualize using distributed parallel cluster application
- Store results
- Share
Stream multi-resolution

STREAMING MULTiresOLUTION

- Interactive view-dependent data loading permits flexible exploration outside fixed regions
- Fast coarse resolution results for visualization and analysis
- High resolution results through user-directed refinement
- Low requirements
 - low bandwidth: download less
 - low storage and computation: process and cache only what you download
- fast
- you already use it every day!
IDX format

IDX: How it works

Original data is reordered in a spatially coherent, coarse-to-fine manner.

When loading, a progressively refined version of the original full resolution data is received.

Data can also be reordered over the temporal dimension, enabling progressive computation of, e.g. seasonal averages.

coarse data is original, not a down-sampled copy
ESGF sets networking best practices into place to effectively transport tens of petabytes of climate data

Immediate goal: 4 Gbps (1 PB/month) of sustained disk-to-disk data transfer between ESGF primary data centers

Stretch goal: 16 Gbps (1 PB/week) of sustained disk-to-disk data transfer between ESGF primary data centers
Accelerated Climate Modeling for Energy (ACME) end-to-end workflow
Data workshop and conferences reports: community involvement and outreach

DOE ESGF workshop and conference reports can be found at: http://esgf.llnl.gov/reports.html
- esgf.llnl.gov; ESGF public website
- esgf.llnl.gov/reports.html; ESGF reports
- uvcdat.llnl.gov; UV-CDAT public website
- icnwg.llnl.gov; international network website
- github.com/esgf; ESGF software repository website
- github.com/uv-cdat; UV-CDAT software repository website