Elastic and Secure Energy Forecasting in Cloud Environments

André Martin, **Andrey Brito** and **Christof Fetzer**

andre.martin@tu-dresden.de, andrey@dsc.ufcg.edu.br, christof.fetzer@tu-dresden.de

*SE Group - Technische Universität Dresden - Dresden, Germany

#LSD Lab - Universidade Federal de Campina Grande - Campina Grande, Brazil

STREAM 2016 @ March, 23rd 2016, Tyson, VA
Application Example **SmartGrid**

ACM **DEBS’14** Challenge: SmartMeter recordings

- **Query #1:** Provide *load predication* (two times slices ahead) based on complete set of historical collected measurements
- **Query #2:** *Detect outliers* based on (global) median value of a 24hrs sliding time window
Challenges when Processing of SmartMeter data

1. Data growth
 - Q1: Accumulating historic data (to improve forecasts)
 - Q2: Temporary large states due to (24hr) sliding window
 - **Solution:** Elastic stream processing & *cloud computing*

2. Privacy concerns
 - Processing of privacy sensitive data (SmartPlugs)
State of The Art Open Source Technologies

Elasticity & Privacy

State support

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seep</th>
<th>STORM</th>
<th>Samza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imperial College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State support/pers</td>
<td>Yes</td>
<td>User</td>
<td>KV store</td>
</tr>
<tr>
<td>Exactly Once Sematic</td>
<td>User</td>
<td>Transactional proc.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Challenge #1: Elasticity

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seep</th>
<th>STORM</th>
<th>Samza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Out (expand)</td>
<td>Yes</td>
<td>Partially (no migr)</td>
<td>(Yes) *</td>
</tr>
<tr>
<td>Scale In (contract)</td>
<td>No</td>
<td>No (killing proc.)</td>
<td>(Yes) *</td>
</tr>
</tbody>
</table>

*at least once

Challenge #2: Privacy Preservation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seep</th>
<th>STORM</th>
<th>Samza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>No</td>
<td>Partially (netty.io)</td>
<td>No</td>
</tr>
<tr>
<td>Processing</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Our Approach to Elasticity

• Stateful stream processing using *StreamMine3G*
 ▪ Operator migration protocol [1] provides:
 ▪ **Exactly once** processing semantics
 ▪ is based on **active replication**

[1] *Elastic Scaling of a High-Throughput Content-Based Publish/Subscribe Engine* (Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica, Pascal Felber, Christof Fetzer, Zbigniew Jerzak, Marcelo Pasin, Etienne Rivière), In ICDCS '14: 34th IEEE International Conference on Distributed Computing Systems
Our Approach to Privacy Preserving Stream Processing

Intel SGX (Safe Guard Extensions)

• Trusted environment (enclave) for arbitrary code
• Enclave memory cannot be accessed from non-enclave code
• Enclave code has access to outside code/data
• Remote attestation of enclave code
• Available in all new Skylake processors since Q4/15
• User solely need to trust Intel
Intel SGX & Stream Processing
Approach #1

- **whole process** runs in enclave
- secure channels (via TLS/SSL)
Intel SGX & Stream Processing
Approach #2

- **only operator** runs in enclave
- incoming data decrypted in op.
- outgoing data encrypted in op.
Approach #2
Transparent Wrapper

Node
Operator

Queue

Queue

original operator code

message/tuple encoder/decoder

enclave interception message passing
Intel SGX Research Challenges

1. Limited EPC (Enclave Page Cache) size (128MB) → How to deal with large operator state?
 - “Swapping”: Mechanisms provided by SGX vs. state eviction & encryption strategies tailored to ESP

2. System call interface protection
 - libmusl – exchange data in a controlled manner

3. Enclave threads vs. user space threads
 - How to pass data efficiently between the two worlds?
Summary & Conclusions

1. Lack of **elasticity support** in open source technologies for highly dynamic applications
 - Explicit state support
 - Migration protocol

2. Lack of **privacy preserving stream processing**
 - Operators run in enclaves (Intel SGX)
 - Transparent/non-invasive approach
 - Promising direction – roll out of Skylake processors in Q4/15

Thank you for your attention – Q&A

andre.martin@se.inf.tu-dresden.de