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 Middleware Systems
— Work on In Situ Analysis
— Analysis of Instrument Data

 Compression/Summarization of Streaming
Data

— Post analysis using just summary



In Situ Analysis — Simulation Data

In-Situ Algor'th ms Algorithm/Application Level

— No disk I/O

istical

° Seamlessly Connected?
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— Enhance resource utilization BaElaielaA A =B e

— Simplify the management of analytics code

— GoldRush, Glean, DataSpaces, FlexIO, etc.




Opportunity

* Explore the Programming Model Level in In-
Situ Environment

— Between application level and system level

— Hides all the parallelization complexities by
simplified API

— A prominent example: MapReduce
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Challenges

 Hard to Adapt MR to In-Situ Environment

— MR is not designed for in-situ analytics

* 4 Mismatches
— Data Loading Mismatch
— Programming View Mismatch
— Memory Constraint Mismatch
— Programming Language Mismatch
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System Overview

In-Situ System = Shared-Memory System + Combination
= Distributed System — Partitioning

In-Situ System

Distributed System

Simulation
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Two In-Situ Modes
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Smart vs. Spark

* To Make a Fair Comparison
— Bypass programming view mismatch
* Run on an 8-core node: multi-threaded but not distributed
— Bypass memory constraint mismatch
e Use a simulation emulator that consumes little memory
— Bypass programming language mismatch
* Rewrite the simulation in Java and only compare computation time

* 40 GBinput and 0.5 GB per time-step
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Smart vs. Low-Level Implementations

* Setup

— Smart: time sharing mode; Low-Level: OpenMP + MPI

— Apps: K-means and logistic regression

— 1TBinput on 8-64 nodes
* Programmability

— 55% and 69% parallel codes are either eliminated or converted into sequential code
 Performance

— Up to 9% extra overheads for k-means

— Nearly unnoticeable overheads for logistic regression
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Tomography at Advanced Photon Sour
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Tomographic Image Reconstructlo

* Analysis of tomographic datasets is
challenging

* Long image reconstruction/analysis time

— E.g. 12GB Data, 12 hours with 24 Cores

— Different reconstruction algorithms
* Longer computation times

— Input dataset < Output dataset
* 73MB vs. 476 MB

* Parallelization using MATE+
— Predecessor of Smart System



Mapping to a MapReduce-like API
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IS: Assigned projection slices
Recon: Reconstruction object

dist: Subsetting distance

Output Recon: Final reconstruction object

Inputs

/* (Partial) iteration i */
For each assigned projection slice, is, in IS {
IR = GetOrderedRaySubset(is, i, dist);
For each ray, ir, in rays IR {
(k, off, val) = LocalRecon(ir, Recon(is));
ReconRep(k) = Reduce (ReconRep(k), off, val);
}
}

/* Combine updated replicas */

Recon = PartialCombination(ReconRep)
/* Exchange and update adjacent slices*/
Recon = GlobalCombination(Recon)
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In Situ Analysis SALE

* How do we decide what data to save?
— This analysis cannot take too much time/memory
— Simulations already consume most available memory
— Scientists cannot accept much slowdown for analytics

* How insights can be obtained in-situ?

— Must be memory and time efficient

 What representation to use for data stored
in disks?
— Effective analysis/visualization
— Disk/Network Efficient



Specific Issues

Bitmaps as data summarization

— Utilize extra computer power for data reduction
— Save memory usage, disk I/0 and network transfer time

In-Situ Data Reduction
— In-Situ generate bitmaps
v Bitmaps generation is time-consuming
v Bitmaps before compression has big memory cost
In-Situ Data Analysis
— Time steps selection
v Can bitmaps support time step selection?
v Efficiency of time step selection using bitmaps
Offline Analysis:
— Only keep bitmaps instead of data
— Types of analysis supported by bitmaps
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Efficiency Comparison for In-Situ Analysisas

1 6000 T T T T T T
| I Simulation
14000 - [ Bitmap Generation
[ ITime Step Selection
12000 - B O =ta Writing i
10000 | .
2000 1
G000 - .
4000 - -
2000 - .
1]
0 1come 4 cores 8 cores 16 cores 32 cores 60 cores

Mumber of Cores (Left Bar: Bitmaps; Right Bar: Full Data)

Simulation: Heat3D; Processor: MIC
Time steps: select 25 over 100 time steps
1.6 GB per time step (200*1000*1000)
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e MIC:

e Full Data (original):

e Bitmaps:

More cores
Lower bandwidth

Huge data writing time

Good scalability of both bitmaps
generation and time step
selection using bitmaps

Much smaller data writing time
Overall: 0.81x to 3.28x




