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Abstract— To stay competitive in today’s data driven econ-
omy, enterprises large and small are turning to stream process-
ing platforms to process high volume, high velocity, and diverse
streams of data (fast data) as they arrive. Low-level program-
ming models provided by the popular systems of today suffer
from lack of responsiveness to change: enhancements require
code changes with attendant large turn-around times. Even
though distributed SQL query engines have been available for
Big Data, we still lack support for SQL-based stream querying
capabilities in distributed stream processing systems. In this
white paper, we identify a set of requirements and propose a
standard SQL based streaming query model for management
of what has been referred to as Fast Data.

I. INTRODUCTION

Big Data can be characterized as historical data that has
been processed for storage before being analyzed for insight
into how users behave, organizations perform, devices or
people interact. But as the data-driven economy evolves,
enterprises have begun to recognize the importance of
processing data as it arrives, as instant sense and response,
resulting a new class of distributed processing systems
known as distributed stream processing systems. The data,
generated as a result of people, devices, and/or software
services interacting in real time, generating massive amounts
of high velocity data, is often referred to as Fast Data.

While earlier work on processing real time streams of
data [1], [2], [3], [4] focuses on high velocity data that
arrives continuously (as streams of indefinite duration), the
data was often of one type, for instance, finance data [3]
or sensor data from cooperative-task robots [5], and the
solutions were often centralized. With the arrival of social
media, online shopping, hand-held devices, smart sensors,
health devices, and Internet of Things (IoT), the sources of
information over which real time processing can be done is
significantly multiplied and varied. In response, robust and
scalable distributed message queue and stream processing
systems like Apache Kafka, Apache S4, Apache Storm and
Apache Samza have arisen to cope with the challenge.
These systems allow parallel and distributed processing over
numerous, heterogeneous data streams that act on data as
it arrives, generating new value to both enterprises and its
consumers.

Often real-time or near real-time processing applications
are backed by computed summaries or modeled information
generated by traditional batch-oriented processing systems.
Too, Lambda Architecture (LA) [6], [7], [8] has seen
considerable uptake as a hybrid solution to data analysis.
Architected as three layers, Lambda Architecture has a 1)

speed layer for fast data, 2) batch layer for historical data,
and 3) serving layer supporting queries on top of the results
of the two layers. Some have gone beyond this hybrid
architecture, proposing to [9] replace LA with a single
distributed stream processing system backed by a message
queue that supports replays and gives the scalability needed
for high volume data.

Both Lambda Architecture and its follow-on suffer in that
both require developers to either develop new functionality
in languages like Java or Scala or use a specialized, custom
query language. For instance, frameworks like Summing-
bird [7], require a highly skilled developer who is able
to manipulate complex programming abstractions to fully
utilize the framework. Between the high learning curve,
need for skilled talent, and the too-long a turn-around time
for new functionality, companies are rejecting LA as too
burdensome in a world where companies have to race to
outpace changes in user expectation and outperform in a
fierce competitive environment.

It has been shown through wide adoption of frameworks
like Hive, Drill and Presto that declarative query language
access to large-scale data is a useful thing; the wide adoption
alone is a strong indicator of the ease of use of SQL. In
this white paper, we identify a set of requirements and
propose several extensions to standard SQL for querying
data streams. We also present an architecture building on
the Apache incubator project “Calcite”, a query planning
framework that has a level of generality that makes it suit-
able for different query planning rules for various execution
backends. We are currently working on an implementation
of the proposed query model on top Apache Samza [10].

II. REQUIREMENTS AND SQL EXTENSIONS

Based on recent case studies in data stream processing
applications from social media companies like LinkedIn,
from recent publications from companies like Google, and
through numerous discussions in open source mailing lists,
we identify the following architectural and language require-
ments:

Architectural requirements:

o Horizontal scalability to scale stream processing
pipelines on thousands of stream partitions

o Fault tolerance and ability to recover by replaying
checkpointed streams

e Out of order event handling for stream aggregations
and joins



o Declarative processing implementable over multiple
stream processing architectures

o Incremental processing and early results

Language requirements: We advocate for the use of

standard SQL with a set of minor extensions to enable
streaming queries because of the wide knowledge of SQL
(taught in every undergraduate computer science database
course). We identified several important extensions to SQL
for querying streams to meet. We note that not all standard
SQL queries are possible on streams due to the blocking
nature of some queries.

o Declarative query language to reduce the turnaround
time for streaming application development and make
it easy for non tech-savy users to develop streaming
analytics tasks.

o Streams and relations supported as first class entities
in the language and runtime. STREAM keyword is the
main extension: tells the system to process incoming
tuples, not existing ones (e.g. SELECT STREAM =
FROM OrdersStream)

o Window operator support preserved (hopping, tum-
bling and sliding). HOP, TUMBLE functions in GROUP
BY clause to implement hopping and tumbling window
queries on stream ordered by timestamp or offset of
tuple in a stream

e OVER clause for specification of a window over stream
to extend FROM clause. Useful in windowed joins.

III. ARCHITECTURE

We propose a general architecture as a query planning
pipeline, see Figure 1, where a query is first converted into
a logical plan using Apache Calcite default rules, and then
several stages each implement execution back-end specific
logical plan transformation rules and optimization rules.
Apache Calcite is query planning and optimization library.
The final stage transforms the logical plan to physical
plan, and the physical plan is submitted as a streaming
job/topology through execution manager. This architecture
enables separation of logical transformations on streaming
queries from the stream processing framework specific
transformation and optimizations.

This stage can be divided into multiple stages as needed.
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Our proposed architecture best meets the requirements
we laid out earlier. Each distributed stream processing

framework is different in the way it executes jobs, the type
of jobs that are allowed, and the features the framework
provides to the developer. Because of this variability, a query
planner should consider the above variations in creating
and selecting an efficient physical plan for these different
runtimes. By separating out query planning into multiple
stages, we allow re-use of early stages which are common
to all runtimes.

Due to varying capabilities of stream processing frame-
works, achieving horizontal scalability and handling of fault
tolerance and out of order arrivals will depend on the
framework selection. In our case we use Apache Samza
and utilize data parallelism provided by Samza based on
Kafka stream partitioning to achieve horizontal scalability
and stream task state is stored to checkpointed local storage
for implementing fault tolerance and delayed event handling
for stream aggregations and joins. We utilize Kafka’s offset
based message consuming architecture to implement replay-
ing of streams by storing the last offset processed by each
stream task.

IV. CONCLUSION

A SQL-based streaming query language over fast data
distributed stream processing systems will increase the turn-
around times for application developers, will lower the
barrier to development by allowing any developer with an
understanding of SQL to quickly adapt to the streaming set-
tings and will make it easy to integrate relational databases
into streaming queries. A general implementation of our
architecture and improvements we are doing to Calcite
framework as a part of this project will allow more people to
extend it, re-use it and share new optimizations or planning
rules in different settings.
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